An optimal pointwise Morrey-Sobolev inequality

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Affine Moser-Trudinger and Morrey-Sobolev inequalities

Abstract: An affine Moser-Trudinger inequality, which is stronger than the Euclidean MoserTrudinger inequality, is established. In this new affine analytic inequality an affine energy of the gradient replaces the standard L energy of gradient. The geometric inequality at the core of the affine Moser-Trudinger inequality is a recently established affine isoperimetric inequality for convex bodies...

متن کامل

Optimal decay of extremals for the fractional Sobolev inequality

We obtain the sharp asymptotic behavior at infinity of extremal functions for the fractional critical Sobolev embedding.

متن کامل

An Uniform Sobolev Inequality under Ricci Flow

Abstract. Let M be a compact Riemannian manifold and the metrics g = g(t) evolve by the Ricci flow. We prove the following result. The Sobolev imbedding by Aubin or Hebey, perturbed by a scalar curvature term and modulo sharpness of constants, holds uniformly for (M, g(t)) for all time if the Ricci flow exists for all time; and if the Ricci flow develops a singularity in finite time, then the s...

متن کامل

Sobolev Regularity and an Enhanced Jensen Inequality

We derive a new criterion for a real-valued function u to be in the Sobolev space W 1,2(Rn). This criterion consists of comparing the value of a functional R f(u) with the values of the same functional applied to convolutions of u with a Dirac sequence. The difference of these values converges to zero as the convolutions approach u, and we prove that the rate of convergence to zero is connected...

متن کامل

Pointwise Characterizations of Hardy-sobolev Functions

We establish pointwise characterizations of functions in the HardySobolev spaces H within the range p ∈ (n/(n + 1), 1]. In particular, a locally integrable function u belongs to H(R) if and only if u ∈ L(R) and it satisfies the Hajlasz type condition |u(x)− u(y)| ≤ |x − y|(h(x) + h(y)), x, y ∈ R \ E, where E is a set of measure zero and h ∈ L(R). We also investigate HardySobolev spaces on subdo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2020

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2020.124143